
GPU Computing with

OpenACC Directives
Presented by Bob Crovella

Authored by Mark Harris

NVIDIA Corporation

1,000,000’s

Early Adopters

Time

Research

Universities
Supercomputing Centers

Oil & Gas

CAE
CFD

Finance
Rendering

Data Analytics
Life Sciences

Defense
Weather
Climate

Plasma Physics

GPUs Reaching Broader Set of Developers

100,000’s

2004 Present

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

OpenACC Directives

Program myscience

 ... serial code ...

!$acc kernels

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end kernels

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &

multicore CPUs

OpenACC

Compiler

Hint

Familiar to OpenMP Programmers

main() {

 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

 printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

 double pi = 0.0; long i;

 #pragma acc kernels

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

OpenACC
Open Programming Standard for Parallel Computing

“OpenACC will enable programmers to easily develop portable applications that maximize
the performance and power efficiency benefits of the hybrid CPU/GPU architecture of
Titan.”

--Buddy Bland, Titan Project Director, Oak Ridge National Lab

“OpenACC is a technically impressive initiative brought together by members of the
OpenMP Working Group on Accelerators, as well as many others. We look forward to
releasing a version of this proposal in the next release of OpenMP.”

--Michael Wong, CEO OpenMP Directives Board

OpenACC Standard – Founding Members

Easy: Directives are the easy path to accelerate compute

 intensive applications

Open: OpenACC is an open GPU directives standard, making GPU

 programming straightforward and portable across parallel

 and multi-core processors

Powerful: GPU Directives allow complete access to the massive

 parallel power of a GPU

OpenACC

The Standard for GPU Directives

High-level, with low-level access

Compiler directives to specify parallel regions in C, C++, Fortran

OpenACC compilers offload parallel regions from host to accelerator

Portable across OSes, host CPUs, accelerators, and compilers

Create high-level heterogeneous programs

Without explicit accelerator initialization,

Without explicit data or program transfers between host and accelerator

Programming model allows programmers to start simple

Enhance with additional guidance for compiler on loop mappings, data

location, and other performance details

Compatible with other GPU languages and libraries

Interoperate between CUDA C/Fortran and GPU libraries

e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Directives: Easy & Powerful

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. ”

-- Developer at the Global Manufacturer of Navigation Systems

“
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

Small Effort. Real Impact.

Large Oil Company

3x in 7 days

Solving billions of

equations iteratively for oil

production at world’s

largest petroleum

reservoirs

Univ. of Houston

Prof. M.A. Kayali

20x in 2 days

Studying magnetic

systems for innovations in

magnetic storage media

and memory, field sensors,

and biomagnetism

Ufa State Aviation

Prof. Arthur Yuldashev

7x in 4 Weeks

Generating stochastic

geological models of

oilfield reservoirs with

borehole data

Uni. Of Melbourne

Prof. Kerry Black

65x in 2 days

Better understand complex

reasons by lifecycles of

snapper fish in Port Phillip

Bay

GAMESS-UK

Dr. Wilkinson, Prof. Naidoo

10x

Used for various fields

such as investigating

biofuel production and

molecular sensors.

* Achieved using the PGI Accelerator Compiler

Focus on Exposing Parallelism

With Directives, tuning work focuses on exposing parallelism,

which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

S3D
Research more efficient
combustion with next-
generation fuels

CAM-SE
Answer questions about specific
climate change adaptation and
mitigation scenarios

• Tuning top 3 kernels (90% of runtime)
• 3 to 6x faster on CPU+GPU vs. CPU+CPU
• But also improved all-CPU version by 50%

• Tuning top key kernel (50% of runtime)
• 6.5x faster on CPU+GPU vs. CPU+CPU
• Improved performance of CPU version by 100%

OpenACC Specification and Website

Full OpenACC 2.0 Specification available online

http://www.openacc-standard.org

Quick reference card also available

Compilers available now from PGI, Cray, and CAPS

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

Start Now with OpenACC Directives

Free trial license to PGI Accelerator

Tools for quick ramp

www.nvidia.com/gpudirectives

Sign up for a free trial of the

directives compiler now!

http://www.nvidia.com/gpudirectives

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
$!acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
$!acc end kernels
end subroutine saxpy

...
$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Exercise: SAXPY
SAXPY in C SAXPY in Fortran

Directive Syntax

Fortran
!$acc directive [clause [,] clause] …]

Often paired with a matching end directive surrounding a

structured code block
!$acc end directive

C
#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

kernels: Your first OpenACC Directive

Each loop executed as a separate kernel on the GPU.

!$acc kernels

 do i=1,n

 a(i) = 0.0

 b(i) = 1.0

 c(i) = 2.0

 end do

 do i=1,n

 a(i) = b(i) + c(i)

 end do

!$acc end kernels

kernel 1

kernel 2

Kernel:
A parallel function

that runs on the GPU

Kernels Construct

Fortran
!$acc kernels [clause …]
 structured block
!$acc end kernels

Clauses
 if(condition)

 async(expression)

 Also, any data clause (more later)

C
#pragma acc kernels [clause …]
 { structured block }

C tip: the restrict keyword

Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.g.

 float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”*

Limits the effects of pointer aliasing

OpenACC compilers often require restrict to determine

independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

http://en.wikipedia.org/wiki/Restrict

http://en.wikipedia.org/wiki/Restrict

Complete SAXPY example code

Trivial first example

Apply a loop directive

Learn compiler commands

#include <stdlib.h>

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

 y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

 int N = 1<<20; // 1 million floats

 if (argc > 1)

 N = atoi(argv[1]);

 float *x = (float*)malloc(N * sizeof(float));

 float *y = (float*)malloc(N * sizeof(float));

 for (int i = 0; i < N; ++i) {

 x[i] = 2.0f;

 y[i] = 1.0f;

 }

 saxpy(N, 3.0f, x, y);

 return 0;

}

*restrict:

“I promise y does not alias x”

Compile and run

C:

pgcc –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.c

Fortran:

pgf90 –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.f90

Compiler output:

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c

saxpy:

 8, Generating copyin(x[:n-1])

 Generating copy(y[:n-1])

 Generating compute capability 1.0 binary

 Generating compute capability 2.0 binary

 9, Loop is parallelizable

 Accelerator kernel generated

 9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

 CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

 CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

grid example

Example: Jacobi Iteration

Iteratively converges to correct value (e.g. Temperature), by

computing new values at each point from the average of

neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Jacobi Iteration C Code
while (error > tol && iter < iter_max) {
 error=0.0;

 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);
 }
 }

 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

Jacobi Iteration Fortran Code
do while (err > tol .and. iter < iter_max)
 err=0._fp_kind

 do j=1,m
 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &
 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))
 end do
 end do

 do j=1,m-2
 do i=1,n-2
 A(i,j) = Anew(i,j)
 end do
 end do

 iter = iter +1
end do

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

OpenMP C Code
while (error > tol && iter < iter_max) {
 error=0.0;

#pragma omp parallel for shared(m, n, Anew, A)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);
 }
 }

#pragma omp parallel for shared(m, n, Anew, A)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Parallelize loop across

CPU threads

Parallelize loop across

CPU threads

OpenMP Fortran Code
do while (err > tol .and. iter < iter_max)
 err=0._fp_kind

!$omp parallel do shared(m,n,Anew,A) reduction(max:err)
 do j=1,m
 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &
 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))
 end do
 end do

!$omp parallel do shared(m,n,Anew,A)
 do j=1,m-2
 do i=1,n-2
 A(i,j) = Anew(i,j)
 end do
 end do

 iter = iter +1
end do

Parallelize loop across

CPU threads

Parallelize loop across

CPU threads

Exercises: General Instructions (compiling)

Exercises are in “exercises” directory in your home directory
Solutions are in “solutions” directory

To compile, use one of the provided makefiles
> cd exercises/001-laplace2D-kernels

C:

> make

Fortran:

> make –f Makefile_f90

Remember these compiler flags:
 –acc -ta=nvidia,cuda5.5,cc3.5 -Minfo=accel

Exercises: General Instructions (running)

To run, use one of the provided job files

 qsub myjob_acc – to run the OpenACC version

 Qsub myjob_omp – to run the OMP version (build it first!)
> ./chk # prints your job(s) status

Output is placed in openacc_001_....o<job#> when finished.

OpenACC job file looks like this
#PBS -l walltime=1:00

./laplace2d_acc

The OpenMP version specifies number of cores to use
#PBS -l walltime=1:00

export OMP_NUM_THREADS 6

./laplace2d_omp
Edit this to control the number

of cores to use

Exercise 1: Jacobi Kernels

Task: use acc kernels to parallelize the Jacobi loop nests

Edit laplace2d.c

In the 001-laplace2D-kernels directory

Add directives where it helps

Figure out the proper compilation command (similar to SAXPY example)

Compile with OpenACC parallelization (make laplace2d_acc)

Optionally compile with OpenMP (original code has OpenMP directives)

Run OpenACC with qsub myjob_acc, OpenMP with qsub myjob_omp

Q: can you get a speedup with just kernels directives?

Versus 1 CPU core? Versus 6 CPU cores?

Exercise 1 Solution: OpenACC C
while (error > tol && iter < iter_max) {
 error=0.0;

#pragma acc kernels
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);
 }
 }

#pragma acc kernels
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Execute GPU kernel for

loop nest

Execute GPU kernel for

loop nest

Exercise 1 Solution: OpenACC Fortran
do while (err > tol .and. iter < iter_max)
 err=0._fp_kind

!$acc kernels
 do j=1,m
 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &
 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))
 end do
 end do
!$acc end kernels

!$acc kernels
 do j=1,m-2
 do i=1,n-2
 A(i,j) = Anew(i,j)
 end do
 end do
!$acc end kernels
 iter = iter +1
end do

Generate GPU kernel for

loop nest

Generate GPU kernel for

loop nest

Exercise 1 Solution: C Makefile
CC = pgcc
CCFLAGS =
ACCFLAGS = -acc -ta=nvidia,cuda5.5,cc3.5 -Minfo=accel
OMPFLAGS = -fast -mp -Minfo

BIN = laplace2d_omp laplace2d_acc

all: $(BIN)

laplace2d_acc: laplace2d.c
 $(CC) $(CCFLAGS) $(ACCFLAGS) -o $@ $<

laplace2d_omp: laplace2d.c
 $(CC) $(CCFLAGS) $(OMPFLAGS) -o $@ $<

clean:
 $(RM) $(BIN)

Exercise 1 Solution: Fortran Makefile
F90 = pgf90
CCFLAGS =
ACCFLAGS = -acc -ta=nvidia,cuda5.5,cc3.5 -Minfo=accel
OMPFLAGS = -fast -mp -Minfo

BIN = laplace2d_f90_omp laplace2d_f90_acc

all: $(BIN)

laplace2d_f90_acc: laplace2d.f90
 $(F90) $(CCFLAGS) $(ACCFLAGS) -o $@ $<

laplace2d_f90_omp: laplace2d.f90
 $(F90) $(CCFLAGS) $(OMPFLAGS) -o $@ $<

clean:
 $(RM) $(BIN)

Exercise 1: Compiler output (C)
pgcc -acc -ta=nvidia -Minfo=accel -o laplace2d_acc laplace2d.c
main:
 57, Generating copyin(A[:4095][:4095])
 Generating copyout(Anew[1:4094][1:4094])
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 58, Loop is parallelizable
 60, Loop is parallelizable
 Accelerator kernel generated
 58, #pragma acc loop worker, vector(16) /* blockIdx.y threadIdx.y */
 60, #pragma acc loop worker, vector(16) /* blockIdx.x threadIdx.x */
 Cached references to size [18x18] block of 'A'
 CC 1.3 : 17 registers; 2656 shared, 40 constant, 0 local memory bytes; 75% occupancy
 CC 2.0 : 18 registers; 2600 shared, 80 constant, 0 local memory bytes; 100% occupancy
 64, Max reduction generated for error
 69, Generating copyout(A[1:4094][1:4094])
 Generating copyin(Anew[1:4094][1:4094])
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 70, Loop is parallelizable
 72, Loop is parallelizable
 Accelerator kernel generated
 70, #pragma acc loop worker, vector(16) /* blockIdx.y threadIdx.y */
 72, #pragma acc loop worker, vector(16) /* blockIdx.x threadIdx.x */
 CC 1.3 : 8 registers; 48 shared, 8 constant, 0 local memory bytes; 100% occupancy
 CC 2.0 : 10 registers; 8 shared, 56 constant, 0 local memory bytes; 100% occupancy

Exercise 1: Performance

Execution Time (s) Speedup

CPU 1 OpenMP thread 69.80 --

CPU 2 OpenMP threads 44.76 1.56x

CPU 4 OpenMP threads 39.59 1.76x

CPU 6 OpenMP threads 39.71 1.76x

OpenACC GPU 162.16 0.24x FAIL Speedup vs. 6 CPU cores

Speedup vs. 1 CPU core

CPU: Intel Xeon X5680

6 Cores @ 3.33GHz
GPU: NVIDIA Tesla M2070

What went wrong?
Add PGI_ACC_TIME=1 to execution command line
e.g.: PGI_ACC_TIME=1 ./laplace2d_acc
Accelerator Kernel Timing data
/usr/users/6/harrism/openacc-workshop/solutions/001-laplace2D-kernels/laplace2d.c
 main
 69: region entered 1000 times
 time(us): total=77524918 init=240 region=77524678
 kernels=4422961 data=66464916
 w/o init: total=77524678 max=83398 min=72025 avg=77524
 72: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=4422961 max=4543 min=4345 avg=4422
/usr/users/6/harrism/openacc-workshop/solutions/001-laplace2D-kernels/laplace2d.c
 main
 57: region entered 1000 times
 time(us): total=82135902 init=216 region=82135686
 kernels=8346306 data=66775717
 w/o init: total=82135686 max=159083 min=76575 avg=82135
 60: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=8201000 max=8297 min=8187 avg=8201
 64: kernel launched 1000 times
 grid: [1] block: [256]
 time(us): total=145306 max=242 min=143 avg=145
acc_init.c
 acc_init
 29: region entered 1 time
 time(us): init=158248

66.5 seconds

66.8 seconds

4.4 seconds

8.3 seconds

Huge Data Transfer Bottleneck!
Computation: 12.7 seconds

Data movement: 133.3 seconds

Basic Concepts

PCI Bus

Transfer data

Offload computation

For efficiency, decouple data movement and compute off-load

GPU

GPU Memory

CPU

CPU Memory

Excessive Data Transfers

while (error > tol && iter < iter_max) {
 error=0.0;

 ...
}

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);
 error = max(error, abs(Anew[j][i] - A[j][i]);
 }
 }

A, Anew resident on host

A, Anew resident on host

A, Anew resident on accelerator

A, Anew resident on accelerator

These copies happen

every iteration of the

outer while loop!*

Copy

Copy

*Note: there are two #pragma acc kernels, so there are 4 copies per while loop iteration!

DATA MANAGEMENT

Data Construct

Fortran
!$acc data [clause …]

 structured block

!$acc end data

General Clauses
 if(condition)

 async(expression)

C
#pragma acc data [clause …]

 { structured block }

Manage data movement. Data regions may be nested.

Data Clauses

copy (list) Allocates memory on GPU and copies data from host

to GPU when entering region and copies data to the

host when exiting region.

copyin (list) Allocates memory on GPU and copies data from host

to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the

host when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another

containing data region.

and present_or_copy[in|out], present_or_create, deviceptr.

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C
 #pragma acc data copyin(a[0:size-1]), copyout(b[s/4:3*s/4])

Fortran

!$pragma acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, kernels or parallel

Update Construct

Fortran
!$acc update [clause …]

Clauses
 host(list)

 device(list)

C
#pragma acc update [clause …]

if(expression)

async(expression)

Used to update existing data after it has changed in its

corresponding copy (e.g. update device copy after host copy

changes)

Move data from GPU to host, or host to GPU.

Data movement can be conditional, and asynchronous.

Exercise 2: Jacobi Data Directives

Task: use acc data to minimize transfers in the Jacobi example

Start from given laplace2d.c or laplace2d.f90 (your choice)

In the 002-laplace2D-data directory

Add directives where it helps (hint: [do] while loop)

Q: What speedup can you get with data + kernels directives?

Versus 1 CPU core? Versus 6 CPU cores?

Exercise 2 Solution: OpenACC C
#pragma acc data copy(A), create(Anew)
while (error > tol && iter < iter_max) {
 error=0.0;

#pragma acc kernels
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);
 }
 }

#pragma acc kernels
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Copy A in at beginning of

loop, out at end. Allocate

Anew on accelerator

Exercise 2 Solution: OpenACC Fortran

!$acc data copy(A), create(Anew)
do while (err > tol .and. iter < iter_max)
 err=0._fp_kind

!$acc kernels
 do j=1,m
 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &
 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))
 end do
 end do
!$acc end kernels

 ...

iter = iter +1
end do
!$acc end data

Copy A in at beginning of

loop, out at end. Allocate

Anew on accelerator

Exercise 2: Performance

Execution Time (s) Speedup

CPU 1 OpenMP thread 69.80 --

CPU 2 OpenMP threads 44.76 1.56x

CPU 4 OpenMP threads 39.59 1.76x

CPU 6 OpenMP threads 39.71 1.76x

OpenACC GPU 13.65 2.9x Speedup vs. 6 CPU cores

Speedup vs. 1 CPU core

CPU: Intel Xeon X5680

6 Cores @ 3.33GHz
GPU: NVIDIA Tesla M2070

Note: same code runs in 9.78s on NVIDIA Tesla M2090 GPU

Further speedups

OpenACC gives us more detailed control over parallelization

Via gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU

hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling, we can

reorganize the code for higher performance

Will tackle these in later exercises

Finding Parallelism in your code

(Nested) for loops are best for parallelization

Large loop counts needed to offset GPU/memcpy overhead

Iterations of loops must be independent of each other

To help compiler: restrict keyword (C), independent clause

Compiler must be able to figure out sizes of data regions

Can use directives to explicitly control sizes

Pointer arithmetic should be avoided if possible

Use subscripted arrays, rather than pointer-indexed arrays.

Function calls within accelerated region must be inlineable.

Tips and Tricks

(PGI) Use time option to learn where time is being spent

PGI_ACC_TIME=1

Eliminate pointer arithmetic

Inline function calls in directives regions

(PGI): -inline or –inline,levels(<N>)

Use contiguous memory for multi-dimensional arrays

Use data regions to avoid excessive memory transfers

Conditional compilation with _OPENACC macro

OpenACC Learning Resources

OpenACC info, specification, FAQ, samples, and more

http://openacc.org

PGI OpenACC resources

http://www.pgroup.com/resources/accel.htm

http://openacc.org/
http://www.pgroup.com/resources/accel.htm

COMPLETE OPENACC API

Directive Syntax

Fortran
!$acc directive [clause [,] clause] …]
Often paired with a matching end directive surrounding a

structured code block
!$acc end directive

C

#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

Kernels Construct

Fortran
!$acc kernels [clause …]
 structured block
!$acc end kernels

Clauses
if(condition)

async(expression)

Also any data clause

C
#pragma acc kernels [clause …]
 { structured block }

Kernels Construct

Each loop executed as a separate kernel on the GPU.

!$acc kernels
 do i=1,n
 a(i) = 0.0
 b(i) = 1.0
 c(i) = 2.0
 end do

 do i=1,n
 a(i) = b(i) + c(i)
 end do

!$acc end kernels

kernel 1

kernel 2

Parallel Construct

Fortran
!$acc parallel [clause …]
 structured block
!$acc end parallel

Clauses
if(condition)

async(expression)

num_gangs(expression)

num_workers(expression)

vector_length(expression)

C
#pragma acc parallel [clause …]
 { structured block }

private(list)

firstprivate(list)

reduction(operator:list)

Also any data clause

Parallel Clauses

num_gangs (expression) Controls how many parallel gangs are

created (CUDA gridDim).

num_workers (expression) Controls how many workers are created

in each gang (CUDA blockDim).

vector_length (list) Controls vector length of each worker

(SIMD execution).

private(list) A copy of each variable in list is

allocated to each gang.

firstprivate (list) private variables initialized from host.

reduction(operator:list) private variables combined across gangs.

Loop Construct

Fortran
!$acc loop [clause …]
 loop
!$acc end loop

Combined directives

!$acc parallel loop [clause …]
!$acc kernels loop [clause …]

C
#pragma acc loop [clause …]
 { loop }

!$acc parallel loop [clause …]
!$acc kernels loop [clause …]

 Detailed control of the parallel execution of the following loop.

Loop Clauses

collapse(n) Applies directive to the following n

nested loops.

seq Executes the loop sequentially on the

GPU.

private(list) A copy of each variable in list is created

for each iteration of the loop.

reduction(operator:list) private variables combined across

iterations.

Loop Clauses Inside parallel Region

gang Shares iterations across the gangs of the

parallel region.

worker Shares iterations across the workers of

the gang.

vector Execute the iterations in SIMD mode.

Loop Clauses Inside kernels Region

gang [(num_gangs)] Shares iterations across across at most
num_gangs gangs.

worker [(num_workers)] Shares iterations across at most

num_workers of a single gang.

vector [(vector_length)] Execute the iterations in SIMD mode with
maximum vector_length.

independent Specify that the loop iterations are

independent.

OTHER SYNTAX

Other Directives

cache construct Cache data in software managed data

cache (CUDA shared memory).

host_data construct Makes the address of device data

available on the host.

wait directive Waits for asynchronous GPU activity to

complete.

declare directive Specify that data is to allocated in device

memory for the duration of an implicit

data region created during the execution

of a subprogram.

Runtime Library Routines

Fortran
use openacc

#include "openacc_lib.h"

acc_get_num_devices

acc_set_device_type

acc_get_device_type

acc_set_device_num

acc_get_device_num

acc_async_test

acc_async_test_all

C
#include "openacc.h"

acc_async_wait

acc_async_wait_all

acc_shutdown

acc_on_device

acc_malloc

acc_free

Environment and Conditional Compilation

ACC_DEVICE device Specifies which device type to connect

to.

ACC_DEVICE_NUM num Specifies which device number to

connect to.

_OPENACC Preprocessor directive for conditional

compilation. Set to OpenACC version

Thank you

